What you always wanted to know about nanoparticles, proteins, and biomaterials, but never dared to ask

events hall

Prof. Klaus D. Jandt


David Wang Auditorium, 3rd floor Dalia Meidan Bldg.


This lecture presents an overview on major research work of the Fellow’s group in the areas of polymer nanoparticles for drug delivery, control of protein adsorption on materials surfaces and protein nanofibers. In addition, the new excellence graduate school (Research Training Group) RTG 2723: Materials-Microbe-Microenvironments: Antimi¬cro¬bial biomaterials with tailored structures and properties (M-M-M) funded by the German Science Foundation will be introduced.

Polymer nanoparticles (PNP) became recently exceedingly popular through novel vaccination technologies but have also major potential for fighting inflammation and cancer. These drug release properties of the PNP depend on their structure. Yet, the literature reports little about the structure and the properties of most PNPs, except the chemical composition. The PNP’s crystallinity, thermal and mechanical properties are frequently ignored, even though they may play a key role in the drug delivery properties of the PNPs.

Protein adsorption on biomaterials is the first process after implantation and determines much of the fate of the biomaterial, such as cell adhesion, blood coagulation or infection at the implant site. Despite decades of research, only rules of thumb exist to predict protein adsorption behavior. We present nanotechnological approaches to control protein adsorption using nanostructured semicrystalline polymers and crystal facets of TiO2. Self-assembled protein nanofibers consisting of one or more proteins, potentially allow to tailor the properties of biomaterials interfaces and to create bone.

Host: Asst. Prof. Joshua M. Grolman